反三角函数计算法则:arcsin(-x)=-arcsinx,arccos(-x)=π-arccosx,arccot(-x)=π-arccotx等。
反三角函数的运算法则
公式:
cos(arcsinx)=√(1-x²)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsinx=x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1)!!表示双阶乘
arccosx=π-(x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctanx=x-x^3/3+x^5/5-……
arctanA+arctanB
设arctanA=x,arctanB=y
因为tanx=A,tany=B
利用两角和的正切公式,可得:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)
所以x+y=arctan[(A+B)/(1-AB)]
即arctanA+arctanB=arctan[(A+B)/(1-AB)]
《反三角函数计算法则.dox》
标签:三角函数,公式,基本