当前位置:知之问问>百科知识>点到直线的距离公式是什么?

点到直线的距离公式是什么?

2024-01-08 06:48:39 编辑:join 浏览量:597

点到曲线的距离公式:点到直线的距离公式是什么?

公式中方程为Ax+By+C=0,点P的坐标为(x0,y0)。

假设点坐标为(dx,dy), 曲线方程为f(x,y)=0, 从隐曲线最近点(u,v)到该点的向量必垂直于曲线,因此可以通过寻找满足下式的点获得最近点:

1)(u,v)指手是曲线上的一点,满足f(u,v)=0;

2)向渗做量s=(dx,dy)-(u,v), 即 (dx-u, dy-v);

求出所有的s,其中最短的丛逗衡距离即为点到曲线的距离。

点到直线的距离公式是什么?

扩展资料:

根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,

设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A

则l'的解析式为y-y₀=(B/A)(x-x₀)

把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))

由两点间距离公式得

PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2

+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2

=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2

+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2

=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2

+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2

=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(Ax₀+By₀+C)^2/(A^2+B^2)

所以PQ=|Ax₀+By₀+C|/√(A^2+B^2),公式得证。

参考资料:百度百科——点到直线距离

标签:点到,直线,公式

版权声明:文章由 知之问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhzhwenwen.com/article/273141.html
热门文章