先定义什么是区间套:
设闭区间列{ [an, bn] } 具有如下性质:
① [an, bn]包含[an+1,bn+1 ], n=1,2,...; (其中的意思是[an+1,bn+1 ]是[an, bn]的子集)
② lim (bn-an)=0 (n→∞),
则称{ [an, bn] } 为闭区间套,或简称区间套。
下面是区间套定理:
若{ [an, bn] } 是一个区间套,则在实数R中存在唯一的点ξ,使得ξ∈[an, bn],n=1,2,..., 即 an≤ξ≤bn, n=1,2,...
注:这个定理实际上表明了实数的完备性,实数是连续地充满整个数直线而没有间隙,而有理数就不具备这个性质。
标签:定理,区间,内容
版权声明:文章由 知之问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhzhwenwen.com/answer/95441.html