反函数公式:y=f ^(-1)(x)。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一告世渗个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
反函数性质
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(2)一个函数与它的反函数在相应区袜脊间上单调性一致。
(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函返掘数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性。
(5)严增(减)的函数一定有严格增(减)的反函数。
(6)反函数是相互的且具有唯一性。
(7)定义域、值域相反对应法则互逆(三反)。
标签:反函数,公式