当前位置:知之问问>生活百科>ARMA和ARIMA的区别

ARMA和ARIMA的区别

2023-05-26 05:16:43 编辑:join 浏览量:590

ARMA和ARIMA的区别

1、运用对象不同

AR,MA,ARMA都是运用于原始数据是平稳的时间序列。

ARIMA运用于原始数据差分后是平稳的时间序列。

2、时间序列不同

AR(自回归模型),AR ( p) ,p阶的自回归模型。

MA(移动平均模型),MA(q),q阶的移动平均模型。

ARIMA(差分自回归移动平均模型)。

3、平稳性差别

ARMA模型的平稳性要求y的均值、方差和自协方差都是与时间无关的、有限的常数。 可以证明,ARMA(p, q)模型的平稳性条件是方程()0Lφ=的解的模都大于1,可逆性条件是方程()0Lθ=的解的模都大于1。

ARMA模型只能处理平稳序列,因此对于平稳序列,可以直接建立AR、MA或者ARMA模型。但是,常见的时间序列一般都是非平稳的。必须通过差分后转化为平稳序列,才可以使用ARMA模型。  

ARIMA模型 (autoregressive integrated moving average) 定义:如果非平稳时间序列yt经过k次差分后的平稳序列zt=△kyt服从ARMA(p, q)模型。

那么称原始序列yt服从ARIMA(p, k, q)模型。 也就是说,原始序列是I(k)序列,k次差分后是平稳序列I(0)。平稳序列I(0)服从ARMA模型,而非平稳序列I(k)服从ARIMA模型。

参考资料来源:

参考资料来源:

标签:ARMA,ARIMA,区别

版权声明:文章由 知之问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhzhwenwen.com/life/88991.html
热门文章