设圆心c(a,b),因圆过原点,半径r=√(a^2+b^2),圆方程为:(x-a)^2+(y-b)^2=a^2+b^2,圆通过(4,1)点,坐标值代入圆方程,(4-a)^2+(1-b)^2=a^2+b^2,化简,8a+2b-17=0,圆 与直线4x-y+1=0相切,圆心至直线距离为圆半径。
根据点线距离公式r=√(a^2+b^2)=|4a-b+1|/√17,与前式联立,17a^2-72a+76=0,a=2,b=1/2,或a=38/17,b=-15/2,半径r=√17/2,或r=√70801/34,所求圆方程为:(x-2)^2+(y-1/2)^2=17/4或(x-38/17)^2+(y-15/2)^2=70801/1156。
圆是指在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)²+(y-b)²=r²,其中点(a,b)是圆心,r是半径。
圆是一种几何图形,也是一种轴对称、中心对称图形。同时,圆又是“正无限多边形”,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。由于“无限”是一个概念,所以世界上没有真正的圆,只有一种概念性的图形。
标签:直线,方程,相切