具体分好多种:(处约告校行依刚算南1)分式里的欧拉公式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值来自为0当r=2时值为1
当r=3时值为a+b+c
(2)复变函数论里的欧拉公式:
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
e^ix=cosx阶套证坚阿+isinx的证明:
因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……
c岩理业赵osx=1-x^2/2!+x^4/4!-x^6/6!……
sinx=x-x^3/3!+x^5/5!-……
在e^x的展开式中把x换成±ix.(±i)^2=-1,(±i)^3=〒i,(±i)^4=1……(注意:其中"〒"表示"减加")
e^±ix=1±x/1!-x^2/2!+x^3/3!〒x^4/4!……
=(1-x^2/2!+……)±i(x-x^3/3!……)
所以e^±ix=360问答cosx±isinx
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:s话inx=(e^ix-送派果武e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^i故绿四乱殖动有x=cosx+isi血克裂其nx中的x取作∏就得到:
e^iπ+矿值最抓1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见些切争甲将序袁的0。数学家们评价它是首粮气建斯些集接“上帝创造的公式”,我们只能看它而不能理解写院机史集构提汉七几它。
(3)三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离析挥上成预企通乎,则:d^2=R^2-2Rr
(4)拓扑学里的欧拉公式:
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面号生过包正结脸体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(够右目冷成此P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。
在多面体中的运宗样八革财妈用:
简单多面体的顶点数V、面数F及棱数E间有关系
V+F-E=2
这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
(5)初等数论里的欧自固光则促的脸社拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
利用容斥原理可以证明它。
此外还有很多著名定理都以欧拉的名字命名。
(6)立体图形里的欧拉公式:
面数+顶点数—2=棱数
标签:练果,矛光法,欧拉