幻方(Magic Square)是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法。幻方也是一种传统游戏。旧时在学堂多见。它是将从一到若干个数的自然数排成纵横各为若干个数的正方形,使在同一行、同一列和同一对角线上的几个数的和都相等。幻方(OEIS中的数列A006052)的数目还没有得到解决。反幻方的定义:在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和不相等,具有这种性质的图表,称为"反幻方"。反幻方与正幻方最大的不同点是幻和不同,正幻方所有幻和都相同,而反幻方所有幻和都不同。所谓幻和就是幻方的任意行、列及对角线几个数之和。边框外围的数字之和就是幻和。红色为偶数,黑色为奇数。可以说反幻方是一种特殊的幻方。反幻方的幻和可以全部不同,也可以部分相同。关于幻方的起源,我国有"河图"和"洛书"之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上天,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是"河图",也是最早的幻方。伏羲氏凭借着"河图"而演绎出了八卦,后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为"洛书"。"洛书"所画的图中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到九个。这九个数就可以组成一个纵横图,人们把由九个数3行3列的幻方称为3阶幻方,除此之外,还有4阶、5阶...后来,人们经过研究,得出计算任意阶数幻方的各行、各列、各条对角线上所有数的和的公式为:S=n(n^2+1) /2其中n为幻方的阶数,所求的数为S.
标签:幻方