哈哈哈,正好是我们本专业的问题,不请自来。回答如下:
线性代数公式是:(AB)^T=(B^T)(A^T),(AB)^(-1)=[B^(-1)][A^(-1)]。
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=a^T*b,这里的a^T指示矩阵a的转置。
重要定理
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
1、矩阵非奇异(可逆)当且仅当它的行列式不为零。
2、矩阵非奇异当且仅当它代表的线性变换是个自同构。
3、矩阵半正定当且仅当它的每个特征值大于或等于零。
4、矩阵正定当且仅当它的每个特征值都大于零。
5、解线性方程组的克拉默法则。
6、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
有小伙伴认同小编的回答吗~欢迎点赞哦~
标签:线性代数,公式