i.二次根橡汪式的定义:一般地,形如√ā(a≥0)的式子叫做二次根式。ii.二次根式√ā的简单性质和几何意义1)√ā≥0(a≥0)[双非负性质]2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离iii.二次根式的性质和最简二次根式1)二次根式√ā的化简a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根√ab=√a·√b(a≥0,b≥0)√a/b=√a/√b(a≥0,b≥0)3)最简二次根式条庆银件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或誉如宴平方式的因数或因式。iv.二次根式的乘法和除法1运算法则√a·√b=√ab(a≥0,b≥0)√a/b=√a/√b(a≥0,b≥0)2共轭因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。v.二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并ⅵ.二次根式的混合运算确定运算顺序灵活运用运算定律正确使用乘法公式分母有理化要及时
标签:根式,定义,二次